Improving Classification Accuracy of Feedforward Neural Networks for Spiking Neuromorphic Chips

نویسندگان

  • Antonio Jimeno-Yepes
  • Jianbin Tang
  • Benjamin Scott Mashford
چکیده

Deep Neural Networks (DNN) achieve human level performance in many image analytics tasks but DNNs are mostly deployed to GPU platforms that consume a considerable amount of power. New hardware platforms using lower precision arithmetic achieve drastic reductions in power consumption. More recently, brain-inspired spiking neuromorphic chips have achieved even lower power consumption, on the order of milliwatts, while still offering real-time processing. However, for deploying DNNs to energy efficient neuromorphic chips the incompatibility between continuous neurons and synaptic weights of traditional DNNs, discrete spiking neurons and synapses of neuromorphic chips need to be overcome. Previous work has achieved this by training a network to learn continuous probabilities, before it is deployed to a neuromorphic architecture, such as IBM TrueNorth Neurosynaptic System, by random sampling these probabilities. The main contribution of this paper is a new learning algorithm that learns a TrueNorth configuration ready for deployment. We achieve this by training directly a binary hardware crossbar that accommodates the TrueNorth axon configuration constrains and we propose a different neuron model. Results of our approach trained on electroencephalogram (EEG) data show a significant improvement with previous work (76% vs 86% accuracy) while maintaining state of the art performance on the MNIST handwritten data set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving energy efficiency and classification accuracy of neuromorphic chips by learning binary synaptic crossbars

Deep Neural Networks (DNN) have achieved human level performance in many image analytics tasks but DNNs are mostly deployed to GPU platforms that consume a considerable amount of power. Brain-inspired spiking neuromorphic chips consume low power and can be highly parallelized. However, for deploying DNNs to energy efficient neuromorphic chips the incompatibility between continuous neurons and s...

متن کامل

Backpropagation for Energy-Efficient Neuromorphic Computing

Solving real world problems with embedded neural networks requires both training algorithms that achieve high performance and compatible hardware that runs in real time while remaining energy efficient. For the former, deep learning using backpropagation has recently achieved a string of successes across many domains and datasets. For the latter, neuromorphic chips that run spiking neural netwo...

متن کامل

A Neuromorphic CMOS Family and its Application

Silicon circuits that mimic the nervous systems of insects and other animals represent the future of neurocomputing. They can perform various neural functions because the microstructures of a nervous system are replicated on their silicon chips. Since recent functional models of spiking neural networks tend to use spiking neurons, neuromorphic engineers have developed CMOS neural systems with s...

متن کامل

Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks

The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficien...

متن کامل

INsight: A Neuromorphic Computing System for Evaluation of Large Neural Networks

Deep neural networks have been demonstrated impressive results in various cognitive tasks such as object detection and image classification. In order to execute large networks, Von Neumann computers store the large number of weight parameters in external memories, and processing elements are timed-shared, which leads to power-hungry I/O operations and processing bottlenecks. This paper describe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017